Review

Eicosapentaenoic Acid (EPA) Reduces Cardiovascular Events: Relationship with the EPA/Arachidonic Acid Ratio

Haruo Ohnishi¹ and Yasushi Saito²

¹Mochida Pharmaceutical Co., Ltd., Tokyo, Japan
²Chiba University Graduate School of Medicine, Chiba, Japan

The clinical efficacy of fish oil and high-purity eicosapentaenoic acid ethyl ester (hp-EPA-E) for treating cardiovascular disease (CVD) has been reported. Fish oil contains saturated and monounsaturated fatty acids that have pharmacological effects opposite to those of ω3 fatty acids (ω3). Moreover, ω3, such as EPA and docosahexaenoic acid (DHA), do not necessarily have the same metabolic and biological actions. This has obscured the clinical efficacy of ω3. Recently, the Japan EPA Lipid Intervention Study (JELIS) of hp-EPA-E established the clinical efficacy of EPA for CVD, and higher levels of blood EPA, not DHA, were found to be associated with a lower incidence of major coronary events. A significant reduction in the risk of coronary events was observed when the ratio of EPA to arachidonic acid (AA) (EPA/AA) was >0.75. Furthermore, the ratio of prostaglandin (PG) I₃ and PGI₂ to thromboxane A₂ (TXA₂) ([(PGI₁ + PGI₃)/TXA₂]) was determined to have a linear relationship with the EPA/AA ratio as follows: (PGI₂ + PGI₃)/TXA₂ = λ + π* (EPA/AA). Like PGI₂, PGI₁ not only inhibits platelet aggregation and vasoconstriction, but also is assumed to reduce cardiac ischemic injury and arteriosclerosis and promote angiogenesis. Thus, the effects of EPA in reducing the risk of CVD could be mediated by biological action of PGI₃ in addition to hypotriglyceridemic action of EPA. Compared with DHA, EPA administration increases the EPA/AA ratio and the (PGI₂ + PGI₃)/TXA₂ balance to a state that inhibits the onset and/or progression of CVD.

Key words: EPA, PGI₃, Cardiovascular disease, PGI/TXA balance, EPA/AA ratio

Introduction

Numerous clinical trials have demonstrated the effects of oral preparations (fish oil and purified ω3 fatty acids [ω3]) in preventing and treating various diseases. However, the effects of ω3, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have not been differentiated in most fish oil studies, even though these effects are not necessarily alike. Therefore, elucidating the different mechanisms of action of EPA and DHA could lead to substantial improvement in the therapeutic use of fish oil. Clinical trials of fish oil have obscured the understanding of the physiological and pharmacological roles and health benefits of each ω3.

In response to a meta-analysis of fish oil clinical studies, Tolonen et al. commented that fish oils contain only approximately 50% ω3, while the remaining fatty acids, such as AA and EPA, antagonize each other, and such interactions have not been examined. Saturated and monounsaturated fatty acids that have pharmacological effects opposite to those of ω3 are often present as minor components in fish oil. In contrast, many in vitro experiments have not considered the fact that EPA is metabolized to prostaglandin I₃ (PGI₃) with high bioactivity in vivo, another factor complicating the evaluation of ω3.

Based on these considerations and the results of purified ω3 studies and clinical trials of the hazard ratios (HRs) of fatty acids for major coronary events, the effects of EPA on cardiovascular events have been clarified, and the mechanism of action of EPA has
been studied. Both the pharmacological effects of DHA on the cardiovascular system and the clinical efficacy of preparations primarily containing DHA and EPA suggest that DHA decreases the risk of cardiovascular events. However, it is unknown whether DHA makes a major contribution to the clinical efficacy observed in clinical trials, as, to the best of our knowledge, there have been no interventional trials involving purified DHA only.

Origins of Clinical Research

In 1959, it was found that orally ingested herring oil (EPA concentration: 12.5%, DHA concentration: 8.9%) reduces the blood cholesterol and triglyceride (TG) levels. In 1961, a reduction in the blood lipid levels was reported after the ingestion of herring oil fraction (EPA concentration: 24%, DHA concentration: 35%) . Another study reported that the adipose tissue of individuals consuming large amounts of fish contained high levels of C:20 fatty acids . In 1972, Nelson reported that long-term seafood consumption by heart disease patients appeared to extend the average life span of the patients . Based on findings reported in 1971 and 1975, Dyerberg et al. hypothesized that the lower incidence of cardiac disease, atherosclerosis and myocardial infarction observed in the Inuit population compared to Danish individuals was associated with low blood cholesterol and TG levels and high blood EPA levels. These findings led to a number of studies that examined the effects of fish oil and high-purity ω3 on hyperlipidemia and cardiovascular and other events, focusing on the involvement of EPA and DHA.

The Hypothesis of Dyerberg et al. Regarding the Association between the Blood EPA Levels and Cardiovascular Events

A series of studies by Dyerberg et al. prompted numerous reports of the efficacy of fish oil and high-purity EPA in the treatment of various diseases. In 1971, Dyerberg et al. noted that the levels of blood cholesterol, TGs and β-lipoprotein were lower in the Greenland Inuit than in Danes and that the Inuit diet consisted of a large amount of marine animals and fish, suggesting that this diet was responsible for the low incidence of cardiac disease in the Inuit.

In 1975, Dyerberg et al. compared the fatty acid composition of blood from the Inuit with that of Danes. Regardless of the lipid type, the blood EPA levels were significantly higher in the Inuit than in the Danes and the levels of AA in cholesterol esters and phospholipids were significantly lower, whereas the DHA levels were lower in cholesterol esters and TGs and higher in phospholipids. The authors drew attention to the fact that one of the most notable differences between the Inuit and Danes was the high blood EPA content and the high consumption of marine foods by the Inuit (Table 1).

In 1976, Dyerberg et al. reported that, compared to Danes, the Inuit consumed a high-protein, low-carbohydrate diet; whereas, fat consumption was more or less the same in both groups.

However, the fat consumed by the Inuit contained higher concentrations of long-chain polyunsaturated fatty acids, especially EPA, and lower concentrations of linoleic and linolenic acids, suggesting that the low blood cholesterol levels observed in the Inuit were due to the effects of consuming long-chain polyunsaturated fatty acids derived from marine mammals. A similar effect on the blood TG and low-density lipoprotein (LDL) levels may play an important role in differences in the onset of coronary artery atherosclerosis.

In 1978, Dyerberg et al. proposed that the Inuit, who have higher blood EPA levels and lower AA levels than Danes, have a low incidence of myocardial infarction but are prone to hemorrhage, suggesting that foods rich in EPA prevent clot formation. Because EPA, unlike AA, does not induce the aggregation of platelets, high EPA and low AA levels result in an antithrombogenic state. In 1986, it was reported that high blood EPA and low AA levels result in the

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Inuit in Greenland</th>
<th>Caucasian Danes</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>0.08</td>
<td>0.18</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>14:1</td>
<td>0.00</td>
<td>0.08</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>16:0</td>
<td>34.87</td>
<td>30.59</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>16:1</td>
<td>2.68</td>
<td>0.77</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>17:0</td>
<td>0.00</td>
<td>0.47</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>18:0</td>
<td>19.56</td>
<td>17.21</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>18:2</td>
<td>6.58</td>
<td>20.95</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>18:3</td>
<td>0.00</td>
<td>0.50</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>20:1</td>
<td>2.73</td>
<td>0.00</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>20:4</td>
<td>0.81</td>
<td>7.99</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>20:5</td>
<td>7.11</td>
<td>0.16</td>
<td>≤ 0.001</td>
</tr>
<tr>
<td>22:0</td>
<td>0.69</td>
<td>0.00</td>
<td>≤ 0.05</td>
</tr>
<tr>
<td>22:6</td>
<td>3.92</td>
<td>3.04</td>
<td>NS</td>
</tr>
<tr>
<td>24:0</td>
<td>2.12</td>
<td>0.00</td>
<td>≤ 0.001</td>
</tr>
</tbody>
</table>

Relative value, percent.
The EPA/AA Ratio as a Biomarker for CVD

In the latter group. Furthermore, the adjusted mortality rate from CVD was higher in the farming district than in the fishing district.

In line with the findings of Dyerberg et al., Hirai et al. concluded that the consumption of ω_3, specifically EPA, is useful for preventing and treating thrombosis and arteriosclerosis\(^{16}\). Subsequently, the theory of Dyerberg et al. was confirmed epidemiologically among Japanese individuals who consume large amounts of fish. The relationship between ω_3 intake and cardiac disease, estimated based on fish consumption, was also investigated in the USA. During a 6- to 8-year follow-up, a significant correlation was observed between ω_3 (EPA + DHA + docosapentaenoic acid [DPA]) intake and death from cardiac disease in 12,866 patients with risk factors for cardiac disease\(^{17}\).

Iso et al. also reported that an increased intake of fish and ω_3 reduced the relative risk of stroke in 79,839 nurses without a history of CVD, cancer, diabetes or hypercholesterolemia\(^{18}\). These studies suggest a negative correlation between ω_3 intake and the incidence or mortality associated with CVD.

Effects of the Administration of Fish Oil or High-Purity EPA Ethyl Ester (hp-EPA-E) on Cardiovascular Events

A few large studies using fish oil containing high-concentration EPA and DHA and hp-EPA-E have confirmed the effects of ω_3 on cardiovascular events. The GISSI-HF trial reviewed the effects of fish oil in patients with chronic cardiac failure (New York Heart

Table 2. Influences of administration of highly purified EPA-E on blood fatty acid levels and their hazard ratio for major coronary events\(^{21}\)

<table>
<thead>
<tr>
<th>Fatty Acid (µg/mL: mean)</th>
<th>Control</th>
<th>EPA Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palmitic Acid (736)</td>
<td>0.89 (0.60-1.34) p=0.586</td>
<td>1.16 (0.72-1.86) p=0.543</td>
</tr>
<tr>
<td>Stearic Acid (227)</td>
<td>0.73 (0.50-1.07) p=0.103</td>
<td>0.74 (0.48-1.12) p=0.148</td>
</tr>
<tr>
<td>Oleic Acid (678)</td>
<td>1.18 (0.80-1.73) p=0.401</td>
<td>0.88 (0.55-1.39) p=0.571</td>
</tr>
<tr>
<td>Linoleic Acid (825)</td>
<td>1.33 (1.02-1.74) p=0.039</td>
<td>1.12 (0.82-1.53) p=0.469</td>
</tr>
<tr>
<td>AA (168)</td>
<td>0.90 (0.69-1.16) p=0.415</td>
<td>0.86 (0.64-1.17) p=0.336</td>
</tr>
<tr>
<td>EPA (95)</td>
<td>0.83 (0.62-1.10) p=0.186</td>
<td>0.71 (0.54-0.94) p=0.018</td>
</tr>
<tr>
<td>DHA (165)</td>
<td>1.22 (0.91-1.65) p=0.187</td>
<td>0.88 (0.64-1.20) p=0.414</td>
</tr>
</tbody>
</table>
Association classes II-IV). The incidence of all-cause death and hospitalization due to CVD was 59.0% in the placebo group and 56.7% in the fish oil group (1 g/day, EPA-E and DHA-E; 850-882 mg, EPA/DHA: 1/1.2) (hazard ratio [HR]: 0.92, \(p=0.009 \)), with median 3.9-year follow-up, suggesting that the administration of fish oil helped to reduce the number of deaths and episodes of chronic cardiac failure. At three years, the median blood TG level was slightly decreased from 1.42 mmol/L at baseline to 1.34 mmol/L; however, no changes were observed in the total cholesterol, high-density lipoprotein or LDL levels\(^{19}\).

In the Japan EPA Lipid Intervention Study (JELIS), the effects of an hp-EPA-E preparation (Epadel\(^{®}\), purity: >98%, Tokyo, Japan) on coronary events in patients with hypercholesterolemia were investigated for an average of 4.6 years. The hp-EPA-E group received 1.8 g/day of hp-EPA-E and statins, while the control group was given statins only. Major coronary events were observed in 2.8% of the subjects in the hp-EPA-E group and 3.5% of the subjects in the control group, with a significant risk reduction of 19% in the hp-EPA-E group. The risk of the primary end point was reduced, although not significantly, by 18% in the hp-EPA-E group; however, it was reduced significantly (19%) during the secondary prevention evaluation\(^{20}\).

Relationship between Cardiovascular Events and Blood Fatty Acids

Although the above-mentioned results demonstrated that ichthyophagi or the administration of fish oil and/or hp-EPA-E preparations reduces the frequency of cardiovascular events, the relationship between increased blood \(\omega-3 \) levels and the incidence of cardiovascular events remains unclear. However, a few recent studies have focused on this issue. In the JELIS trial, higher blood EPA levels in the EPA-E group were associated with a lower incidence of main coronary events (HR: 0.71, \(p=0.018 \)). No such relationships were observed for the blood DHA levels\(^{21}\) (Table 2).

These findings demonstrate that EPA can prevent coronary events. The JELIS study both scientifically and directly validated the prescience of Dyerberg et al. that EPA can control the occurrence of cardiovascular events. Mozaffarian et al. examined the relationship between the onset of congestive cardiac failure and the EPA, DHA and DPA levels in blood phospholipids in healthy adults \(\geq 65 \) years of age. A multivariate analysis demonstrated a negative correlation between the EPA levels in blood phospholipids and the onset of cardiac failure; the risk of cardiac failure in the subjects in the top EPA level quartile was approximately 50% lower than that in the patients in the bottom quartile (HR: 0.52, \(p=0.001 \)). A trend toward a lower risk was observed for DPA (HR: 0.76, \(p=0.057 \)) but not DHA (HR: 0.84, \(p=0.38 \)), suggesting that the EPA in blood phospholipids controls the onset of congestive cardiac failure in healthy adults. For EPA and DHA, the 6- and 13-year correlations with the baseline levels of blood phospholipids were comparable to those of blood pressure\(^{22}\). Lee et al. analyzed the relationship between mortality after myocardial infarction and the blood phospholipid EPA and DHA levels. With respect to cardiovascular death, the blood EPA HR was 0.41 (\(p=0.005 \)) and the blood DHA HR was 0.84. This finding demonstrates that higher EPA levels are associated with a reduction in the incidence of cardiovascular death in myocardial infarction patients\(^{23}\).

Domei et al. reported that univariate analyses of hazardous cardiac events in patients undergoing percutaneous coronary intervention (PCI) yielded an HR of 0.54 (\(p=0.031 \)) for blood EPA, 0.59 (\(p=0.060 \)) for DHA, 0.50 (\(p=0.013 \)) for the EPA/AA ratio and 0.65 (\(p=0.127 \)) for the DHA/AA ratio, indicating that higher EPA levels or EPA/AA ratios, but not DHA levels or DHA/AA ratios, are associated with a reduction in the incidence of hazardous cardiac events\(^{24}\).

In summary, these findings demonstrate that higher blood EPA levels are associated with a reduction in the onset of congestive cardiac failure in healthy adults, coronary events in patients with hyperlipidemia and mortality in patients with myocardial infarction. However, a study examining the relationship between the blood fatty acid levels at baseline and the risk of developing cardiac failure in Caucasians with no history of cardiac disease, stroke or cardiac failure revealed findings that differed from the aforementioned results. The HR for long-chain \(\omega-3 \) in phospholipids was 0.24 (\(p<0.001 \)) in women and 0.99 (\(p=0.43 \)) in men, while that for EPA was 1.61 (\(p=0.06 \)) and that for DHA was 0.16 (\(p<0.001 \)) in women and 1.17 (\(p=0.51 \)) in men. There was a negative correlation between the \(\omega-3 \) and DHA levels and cardiac failure in women\(^{25}\). The reasons for the differences between these findings are not known. However, it is possible that the fatty acid concentrations varied due to the subjects’ lifestyle changes during the 14.3-year follow-up, given that the correlations between the 14.4-year and baseline EPA and DHA levels were not studied, unlike the study by Mozaffarian et al.\(^{22}\).
Differences between EPA and DHA

As described in the preceding sections, the relationship between the occurrence of cardiovascular events and the blood EPA levels is not identical with that for DHA. This difference is entirely or partially due to the resulting integrating differences in the distribution of these compounds in both tissue and membrane phospholipid subclasses and in their metabolites.

Subclasses of Platelet Phospholipids

The phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI) content in human platelets is 568.65, 429.49, 161.92 and 61.55 nmol phosphorus/5 x 10⁹ cells, respectively. When 14C-EPA is incubated with platelets, 14C-EPA is incorporated at 67.0%, 13.1%, 13.9% and 2.9% into PC, PE, PI and PS, respectively. When 14C-DHA is incubated with platelets, 14C-DHA is incorporated at 37.0%, 45.2%, 7.5% and 1.6% into PC, PE, PI and PS, respectively. When 14C-AA is incubated with platelets, 14C-AA is incorporated at 62.1%, 11.8%, 20.6% and 3.4% into PC, PE, PI and PS, respectively. Compared to DHA, EPA and AA are much more significantly incorporated into PC and less into PE. Thrombin releases 0.2% of incorporated 14C-DHA, 13.4% of 14C-EPA and 19.1% of 14C-AA from platelets. In platelets from human subjects who ingest fish oil, the AA concentrations in PC, PE, PI and PS are 76.5, 120.5, 31.2, and 39.8 nmol/platelet, respectively. Thrombin causes losses of 20.3, 7.4, 14.8 and <1.6 nmol/platelet AA in PC, PE, PI and PS, respectively. PGI₂ is primarily generated from the AA of PC. The EPA concentrations in platelet PC, PE and PS are 22.1, 26.6, 0.7 and 1.6 nmol/platelet, respectively. Thrombin loses 5.2 and 2.0 nmol/platelet of EPA in PC and PE, respectively. PC-derived EPA contributes to PGI₂ generation. The 3H-AA/14C-EPA ratio of PC in platelets double-labeled with 3H-AA and 14C-EPA is unaltered by the stimulation of thrombin, while AA and EPA in PC are released nonselectively. Although 37.0% of 14C-DHA is incorporated into PC, only 0.2% of 14C-DHA is released by thrombin. These findings suggest the following: Platelets have an abundance of PC that contains much AA, and much AA is stored in PC and metabolizes to TXA or PI if the need arises. To replenish the consumed AA in PC adequately, AA is very efficiently incorporated by acyl-CoA: lysophosphatidylcholine acyltransferase. As EPA is also metabolized to TXA and PI, it is efficiently incorporated, as well as AA, but not DHA. This conclusion is in agreement with the findings of Iritani et al. In platelets, the acyl-donor specificity of the enzyme for 1-acyl-glycerophosphorylcholine is as follows: arachidonyl-CoA > eicosapentaenoyl-CoA > linoleyl-CoA > docosahexaenoyl-CoA > palmitoyl-CoA.

Phospholipid Subclasses in the Vascular Endothelial Cell Membrane

Cultured human umbilical arterial endothelial cell membrane phospholipids are constituted by PC (49.0 mol%), PE (28.1 mol%), PS (9.0 mol%), PI (6.0 mol%) and others. The composition of human vascular endothelial cells is similar. More PC appears to exist in endothelial cell membrane phospholipids than in platelets. Following incubation, 62%, 12% and 10% of 14C-EPA and 57%, 11% and 26% of 3H-AA are incorporated into the PC, PE and PI, respectively, of bovine thoracic aorta endothelial cells. These results are similar to those obtained in platelets. For PGI₂ synthesis, 16.2% of incorporated 3H-AA is released from cultured vascular endothelial cell membranes; the rest is released from PI (3.4%), PE (3.5%) and PC (9.3%). These results show that both AA and EPA are metabolized to PGI₂ or PGI₃ through similar pathways in vascular endothelial cells, in which the PC of the blood membrane plays an important role. It has been suggested that differences in EPA and DHA distributions in phospholipid subclasses contribute to the differing clinical effects of EPA and DHA.

Tissue ω3 Levels

ω3 exist as constituents of cell membrane phospholipids. DHA is found in all organs and is abundant in nerve tissues, such as the cerebral cortex, hippocampus and retina, at concentrations that are several hundred times higher than those of EPA. In contrast, the EPA concentrations are only one-fifth to one-thirtieth of those of DHA in organs other than the brain and retina (Fig. 1). The fact that DHA is present in large quantities in nerve tissue suggests that the physiological roles of EPA and DHA are not necessarily identical and that DHA may not influence the cardiovascular system.

Effects of ω3 Administration on the Blood ω3 Levels

Hansen et al. administered either EPA-E (95% purity) or DHA-E (90% purity) to healthy volunteers.
for five weeks. In the EPA-treated subjects, the EPA levels in blood phospholipids rose rapidly, whereas those of DHA decreased slightly. In contrast, the increase in the blood phospholipid DHA levels in the DHA-treated subjects was small, occurring at a moderate rate as compared to the increase in EPA, and the EPA levels increased only moderately. Although the mechanisms have not been elucidated, EPA incorporation into blood phospholipids indicates the priority of EPA in the circulatory pool, with DHA being taken up into the extracirculatory pool, implying that EPA and DHA undergo different processes of metabolism\(^\text{37}\) (Fig. 2). In a similar 6-week study, 4 g/day of EPA-E (96% purity) or DHA-E (92% purity) was administered in patients with mild hypercholesterolemia. The EPA-E increased the plasma phospholipid EPA levels and decreased the AA levels, while the DHA levels remained unchanged. In contrast, DHA-E increased the blood phospholipid DHA levels, while the AA levels decreased and the EPA levels slightly increased\(^\text{38}\) (Fig. 3).

In the JELIS study, 1.8 g/day of hp-EPA-E (Epadel\(^\text{®}\)) resulted in increases in the blood EPA levels from 97 \(\mu\)g/mL to 166 \(\mu\)g/mL and the EPA/AA ratio from 0.599 to 1.085; the DHA levels decreased from 170 \(\mu\)g/mL to 156 \(\mu\)g/mL, and the AA levels decreased from 162 \(\mu\)g/mL to 153 \(\mu\)g/mL\(^\text{39}\). The administration of algae-derived DHA (39% purity; 1.62 g/day) altered the blood phospholipid EPA, DHA, AA and EPA/AA values from 0.57 g/100 g to 1.3 g/100 g, 2.4 g/100 g to 8.3 g/100 g, 9.7 g/100 g to 6.5 g/100 g and 0.06 to 0.19, respectively\(^\text{40}\). Arterburn et al. derived DHA dosage-blood concentration curves from the numerous DHA studies in humans. The blood phospholipid DHA levels increased with a higher DHA dosage, and saturation was observed at high doses. The EPA concentrations increased in a linear manner\(^\text{38}\), matching the results of Hansen et al. mentioned above.

The increase in the blood EPA levels following the DHA administration was considered to have been due to reverse conversion from DHA. The reverse conversion rate in humans has been calculated to be 1.4%\(^\text{41}\). Dietary DHA and EPA have been found to downregulate the DPA to DHA conversion rate to 70%, leading to the expectation that EPA administration does not result in an increase in the DHA levels\(^\text{36}\). Given the autonomous functions of DHA in the brain, retina and sperm, restricted DPA to DHA conversion may play a very important role\(^\text{42}\). In artificially induced \(\omega\)-3-deficiency states, brain tissue membranes resist the decrease in the DHA levels\(^\text{43}\). \(\omega\)-3 deprivation reduces the blood DHA levels by 89% and the brain DHA levels by 37%\(^\text{44}\). EPA to DHA conversion may be restricted in order to maintain constant DHA levels for nervous system signaling\(^\text{45}\). Although the reason for this phenomenon is unknown, the following may be a potential cause. DHA is abun-
The EPA/AA Ratio as a Biomarker for CVD

The EPA/AA ratio increased from 0.059 to 0.114. In similar patients, the administration of fish oil (Omacor®, 1.55 g/day, EPA: 810 mg, DHA: 675 mg) for 7-71 days resulted in carotid plaque phospholipid EPA and DHA increases of 100% and 13%, respectively, whereas the AA levels remained unchanged. Both of these studies confirmed that the incorporation of EPA into carotid plaque is greater than that of DHA. Assuming that the fatty acid level in carotid plaque is similar to that in blood vessel walls, the administration of fish oil containing DHA will also encourage more efficient EPA incorporation into the blood vessel walls; moreover, the EPA will be metabolized to PGI₃, which will contribute to inhibiting cardiovascular events.

Effects of Administration on the Heart ω3 Levels

Fish oil (EPA: 30%, DHA: 20%, 1 g/day) was administered in cardiac transplantation patients for six months, during which the myocardium EPA and DHA levels increased by 3.3-fold and 1.5-fold, respectively. EPA incorporation into the heart muscle was greater than that of DHA. The EPA/AA ratios in the myocardium, blood and erythrocytes increased from 0.020, 0.024 and 0.42 to 0.078, 0.087 and 0.164, respectively. Similarly, when fish oil (3 g EPA + 3 g DHA/day) was administered in patients scheduled for...
coronary artery bypass grafting, the increase in EPA incorporation into the right atrium was greater than that of DHA at six months of follow-up. This result is similar to that observed in carotid plaque.

Effects of ω3 Administration on the Platelet ω3 Levels

Patients with mild hypercholesterolemia were administered 4 g/day of EPA-E (approximately 96% purity) or DHA-E (approximately 92% purity) for six weeks. The administration of DHA and EPA increased the platelet phospholipid DHA levels by 54% (non-significant) and 370%, respectively; however, the AA levels decreased by 15% and 7%, respectively. The most important findings are as follows: in the EPA-treated patients, the EPA percentage increase was greater than the AA percentage decrease; and, in the DHA-treated patients, the AA percentage decrease was approximately half that observed in the EPA-treated patients, whereas the EPA levels remained almost unchanged. The administration of 1.8 g/day of h-pEPA-E (Epadel®) in patients with non-insulin-dependent diabetes mellitus for 14 weeks increased the platelet EPA levels from 2.26% to 3.66% (1.4% increase); however, the AA levels decreased from 24.25% to 23.39% (0.86% decrease), confirming the results of Mori et al. that the increase in the EPA levels exceeds the decrease in the AA levels. The administration of fish oil (2 g/day; EPA-E: 46%, DHA-E: 39%) for 12 weeks resulted in an increase in the platelet EPA levels; however, both the DHA and AA levels remained almost unchanged.

In summary, EPA administration increases the platelet EPA levels more than it decreases the platelet AA levels. However, in DHA-treated patients, the degree of platelet AA decrease and EPA increase is smaller than that observed in EPA-treated patients. This finding indicates that the decrease in TXA2 synthesized in platelets is greater following EPA administration than following DHA administration.

Bioactivity of ω3 Metabolites

PGI Bioactivity and EPA Actions

In the vascular endothelial cell membrane, PGI2 and PGI3 are produced from phospholipid AA and EPA, respectively, whereas in platelets, TXA2 and TXA3 are produced from phospholipid AA and EPA, respectively. PGI1 inhibits platelet aggregation and promotes vasodilation, and the effects of PGI3 are equivalent to those of PGI2. As PGI2 and PGI3 demonstrate both of these effects, it is logical to assume that the effects of PGI1 described below are also true of PGI3. However, the effects of TXA2 on platelet aggregation and vasoconstriction are not observed for TXA3. Therefore, in terms of the PGI/TXA balance, PGI2 + PGI3 should be used for PGI.
and TXA₂ for TXA₂.

Effects of PGI₂ and PGI₃ on the Vascular Tone

PGI₂ regulates the vascular tone via vasodilatation, and nitric oxide (NO) produced in vascular endothelial cells also regulates the vascular tone. In their physiological state, PGI₂ and NO play complementary roles in vasodilation. At the same time, PGI₂ regulates the endothelial function via crosstalk with endothelial nitric oxide synthase (eNOS). This indicates that NO activates PGI₂ synthase and increases PGI₂ production. It is believed that EPA-derived PGI₂ is also involved in NO production. Furthermore, EPA increases NO production without PGI₂ as follows: EPA modifies the lipid composition of the caveolae of endothelial cells, promotes the migration of caveolae-bound eNOS to the cytoplasm and finally activates eNOS.

Effects of PGI₂ and PGI₃ on Neoangiogenesis

Neoangiogenesis is broadly divided into (1) angiogenesis in the narrow sense of the word, in which endothelial cells multiply from existing veins, migrate and form blood vessels, and (2) vasculogenesis, in which new blood vessels are formed from vascular endothelial progenitor cells (EPCs). In neoangiogenesis, growth factors, such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), play important roles. These growth factors influence each other via vasculogenesis, growth factors, such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), play important roles. These growth factors influence each other via vasodilatory mechanisms.

Bone marrow-derived EPCs circulate in the body and support neoangiogenesis via the production of angiogenic factors. EPCs release PGI₂, and their angiogenic activity depends on the production of endogenous PGI₂. EPCs are PGI₂ receptor (IP)-expressing cells; PGI₂ enhances the functions of EPCs (adhesion to the extracellular matrix, migration and the regulation of vascular remodeling) and promotes neoangiogenesis, such as lumen formation, via the late differentiation of EPCs into endothelial cells. These views are supported by the following observations. The PGI₂ analog, iloprost, increases circulating EPCs in patients with critical limb ischemia, demonstrating a curative effect. Dogs with myocardial ischemia exhibit a decreased infarction size and increased capillary density following the administration of hp-EPA-E and bone marrow mononuclear cells containing EPCs.

In addition, the clinical efficacy of hp-EPA-E in patients with arteriosclerosis obliterans has been reported. This efficacy may be partially due to the angiogenic action of PGI₃. Taken together, EPA as a precursor of PGI₃ is suggested to promote neoangiogenesis. However, some experiments with cultured endothelial cells have indicated the role of EPA and DHA inhibition in neoangiogenesis. EPA markedly inhibits the tube-forming ability of endothelial cells, while DHA does not. In addition, DHA attenuates endothelial cell tube formation. Spencer et al. suggested that these effects are due to the inhibition of the production of many angiogenic mediators, such as VEGF and ω₃. In particular, EPA and DHA exhibit potent antiangiogenic effects, and opportunities for original research trials using ω₃ as anticancer agents in humans have been identified.

PGI₂ and PGI₃ in Arteriosclerosis

Many studies have investigated the relationship between PGI₂ and arteriosclerosis. If endothelial cells are damaged, PGI₂ production decreases and TXA₂ production increases, resulting in a cardiovascular toxic response. After the collapse of the PGI₂/TXA₂ balance, the inhibition of platelet adhesion to endothelial cells, platelet aggregation and vasodilatory effects of PGI₂ are inundated by the actions of TXA₂, causing platelet activation, coronary spasms and vascular smooth muscle cell (VSMC) proliferation that can result in arteriosclerosis and subsequently cardiovascular events. PGI₂ inhibits platelet activation, leukocyte adhesion to the endothelium and VSMC proliferation in atherosclerotic plaque and prevents the progression of arteriosclerosis. Transfer of the PGI₂ synthase gene controls the decrease in 6-keto-prostaglandin-F₁α (k-PGF₁α), increases TXB₂ and localizes the neointimal growth caused by balloon injury. In IP-deficient mice, platelet aggregation and VSMC proliferation in response to vascular injury are accelerated, contributing to the progression of arteriosclerosis. In contrast, platelet aggregation is inhibited in TP-deficient mice, while VSMC proliferation is decreased. Owing to the increase in TXA₂ synthase in human arteriosclerosis lesions, TXA₂ production by plaque tissue is thought to contribute to the progression of arteriosclerosis.

In summary, PGI₂ inhibits the initiation and progression of arteriosclerosis, whereas TXA₂ promotes...
these phenomena. The role of PG1\(\beta\) as a potent negative regulator of vascular remodeling and arteriosclerosis has been described. In EPA-treated mice, the vascular cell adhesion molecule-1 (VCAM-1) expression in endothelial cells is decreased, and monocyte adhesion to the endothelium is reduced. The administration of hp-EPA-E (Epadel\(^\circ\), 1.8 g/day) in patients with metabolic syndrome significantly decreases the blood levels of VCAM-1 and intercellular adhesion molecule-1 (ICAM-1)\(^{31}\). The addition of EPA or DHA to endothelial cells inhibits the increased expression of adhesive factors (ICAM-1, VCAM-1 and E-selectin) induced by interleukin 1\(\beta\)\(^{32}\). The administration of 300 mg/day of EPA-E significantly inhibits the proliferation of vascular membrane cells damaged by balloon injury\(^{83}\). The administration of EPA or DHA increases systemic arterial compliance in patients with hyperlipidemia\(^{84}\). In conclusion, PG1\(\beta\) and PG1\(\alpha\) mediate the anti-arteriosclerosis actions of EPA.

PG1\(\beta\) and PG1\(\alpha\) in Ischemic Heart Disease

PG1\(\beta\) is thought to protect the ischemic myocardium, whereas TXA\(\alpha\) is believed to be harmful\(^{85}\). PG1\(\beta\) exerts direct protective effects on cardiac muscle cells that are not achieved via the control of platelets or neutrophils\(^{86}\). This observation is supported by the finding of high TXB\(\beta\) levels in the venous blood in ischemic regions in canine hearts following left anterior descending artery ligation, indicating that TXA\(\alpha\) promotes ischemic injury\(^{85}\). In active-phase patients with angina, platelet IP is reduced and the inhibitory effects of PG1\(\beta\) on platelet aggregation are weakened, whereas the IP count is recovered in inactive-phase patients\(^{87}\). In IP-deficient mice, the size of the myocardial infarction caused by coronary artery ligation is significantly increased compared to that observed in wild-type mice, suggesting that PG1\(\beta\) protects the myocardium from ischemia and reperfusion injury\(^{88}\).

Meanwhile, the administration of hp-EPA-E (Epadel\(^\circ\)) reduces neutrophil infiltration in ischemic regions caused by myocardial ischemia following left circumflex coronary artery ligation and reperfusion in pigs, thus helping to maintain the myocardial eNOS activity in the ischemic myocardium\(^{89}\). EPA is thought to exert its anti-ischemic heart disease actions via PG1\(\alpha\).

Tissue levels of \(\omega3\) metabolites

Balance between PG1 and TXA and the Tissue Levels of \(\omega3\) Metabolites

The PG1\(\beta\) metabolite 2,3-dinor-6-keto-PGF1\(\alpha\) is expressed as d-PGF1\(\alpha\), the PG1\(\alpha\) metabolite \(\triangle \)17-2,3-dinor-6-keto-PGF1\(\alpha\) is expressed as \(\triangle \)-PGF1\(\alpha\), the TXA\(\alpha\) metabolite 11-dehydro-TXB\(\beta\) is expressed as d-TXB\(\beta\) and the TXB\(\beta\) metabolite 2,3-dinor-TXB\(\beta\) is expressed as \(\triangle \)-TXB\(\beta\).

As described above, the bioactivities of PG1 and TXA are not limited to platelet aggregation/anti-aggregation and vasodilatation/relaxation, but rather are far more extensive. Based on these findings, it is necessary to consider the relationship between the PG1/TXA balance and the onset/progression of CVD. Extrinsic EPA reduces PG1 production in human endothelial cells\(^{90}\). However, most of the decrease in the PG1 production is compensated for by the PG1s generated by EPA in vascular cells\(^{91}\). In contrast, PG1 analogs phosphorylate TP, thereby weakening the TXA\(\alpha\)-associated platelet activity\(^{92}\). PG1 also reduces TXA production via platelet IP\(^{93}\). This finding indicates that PG1\(\beta\) and PG1\(\alpha\) control TXA production and actions. These results suggest that the role of PG1s produced from EPA cannot be ignored when examining the relationship between the PG1/TXA balance and the onset/progression of CVD and that the (PG1\(\beta\)+PG1\(\alpha\))/TXA\(\alpha\) ratio is a more appropriate index than the PG1/TXA\(\alpha\) ratio. This observation is in agreement with the above-mentioned hypothesis that, in terms of the PG1/TXA balance, PG1\(\beta\)+PG1\(\alpha\) must be used for PG1 and TXA\(\alpha\) for TXA.

Fisher et al. calculated the PG1/TXA ratio by taking into consideration the PG1\(\beta\) metabolite levels while examining the differences in the thrombotic state between the Inuit and Danes. The urinary d-PGF1\(\alpha\) and d-TXB\(\beta\)/m levels were 0.146 ng/mg creatinine (mgc) and 0.465 ng/mg, respectively, in the Inuit and 0.109 ng/mg and 0.754 ng/mg, respectively, in the Danes. The \(\triangle \)-PGF1\(\alpha\) excretion was 0.049 mg/mg in the Inuit and below the detection limit in the Danes. Moreover, the (d-PGF1\(\alpha\)+\(\triangle \)-PGF1\(\alpha\))/d-TXB\(\beta\)/m ratio was 0.42 in the Inuit and 0.14 in the Danes, suggesting that the PG1/TXA balance was shifted to the anti-thrombogenic state\(^{13}\). Similarly, the urinary (d-PGF1\(\alpha\)+\(\triangle \)-PGF1\(\alpha\))/d-TXB\(\beta\)/m ratio in the Japanese farmers was 0.260, which was lower than the 0.293 observed in the Japanese individuals from the fishing villages who ate a diet rich in fish\(^{94}\). The effects of EPA or DHA administration on the (PG1\(\beta\)+PG1\(\alpha\))/TXA\(\alpha\) ratio are conceptually as follows. EPA administration results in a decrease in the cell membrane AA level, which reduces the production of TXA\(\alpha\) and PG1\(\alpha\) and increases the cell membrane EPA level and thus the PG1\(\beta\) level, resulting in the inhibition of platelet aggregation and vascular constriction. In contrast, DHA administration decreases the cell membrane AA level; however, as mentioned above, this decrease is smaller than that of...
The EPA/AA Ratio as a Biomarker for CVD

Administration of EPA

EPA in VW: Increased
AA in PLT and VW: Decreased
TXA2 \(\ll PGI_2 + PGI_3\)

Administration of DHA

EPA in VW: Not Changed
AA in PLT and VW: Moderately Decreased
TXA2 \(> PGI_2 + PGI_3\)

CVD: Cardiovascular Disease, PLT: Platelets, VW: Vessel wall

Fig. 4. Schematic view of balance between prostaglandin I\(_2,3\) and thromboxane A\(_2\).

Relationship between the \((PGI_2 + PGI_3)/TXA_2\) and EPA/AA Ratios

Several reports have described a reduced incidence of cardiovascular events associated with an increased EPA/AA ratio. For instance, the incidence of post-PCI cardiac events is negatively associated with the blood EPA/AA ratio (HR: 0.52, \(p=0.048\)) but not the blood DHA/AA ratio (HR: 0.89, \(p=0.73\))\(^24\). In the JELIS study, the administration of hp-EPA-E (Epadel\(^\circledR\)) and statins in hypercholesterolemia patients resulted in a significant reduction in the risk of coronary events when the EPA/AA ratio was \(>0.75\) (HR: 0.83, \(p=0.031\))\(^20\). These findings led to growing interest in the relationship between the EPA/AA and \((PGI_2 + PGI_3)/TXA_2\) ratios.

Representing the blood vessel wall EPA level as EPA\(_a\), the blood vessel wall AA level as AA\(_a\) and the platelet AA level as AA\(_p\) and assuming that PGI\(_3\), PGI\(_2\) and TXA\(_2\) are produced proportionately to these levels, the PGI\(_3\) level can be expressed as \(\alpha * EPA_a\), the PGI\(_2\) level as \(\beta * AA_a\) and the TXA\(_2\) level as \(\gamma * AA_p\) (\(*\) shows multiplication). The following formula is thus established:

\[
\frac{(PGI_2 + PGI_3)}{TXA_2} = \frac{\beta * AA_a}{\gamma * AA_p} + \frac{\alpha * EPA_a}{\gamma * AA_p}
\]

where \(\beta / \gamma\) and \(\alpha / \gamma\) are constants. Assuming that \(AA_a/AA_p\) are definite numbers, if they are substituted by \(\delta\), \(\varepsilon\) and \(\eta\), respectively,

\[
(\frac{PGI_2 + PGI_3}{TXA_2}) = \delta * \eta + \varepsilon * (EPA_a/AA_p)
\]

Assuming that EPA\(_a\) and AA\(_p\) are proportionate to the blood phospholipid EPA and AA levels,

\[
(\frac{PGI_2 + PGI_3}{TXA_2}) = \delta * \eta + \varepsilon * \theta / \kappa * (EPA_a/AA_p)
\]

Assuming that \(\delta * \eta\) and \(\varepsilon * \theta / \kappa\) are definite numbers expressed as \(\lambda\) and \(\pi\),

\[
(\frac{PGI_2 + PGI_3}{TXA_2}) = \lambda + \pi * (EPA_a/AA)
\]

The formula \((PGI_2 + PGI_3)/TXA_2 = \lambda + \pi * (EPA_a/AA)\) proves that the \((PGI_2 + PGI_3)/TXA_2\) ratio can be triggered by EPA administration. Consequently, the percentage decrease in TXA\(_2\) and PGI\(_2\) is smaller than that observed when EPA is administered. Changes in the cell membrane EPA content are also minimal, and the PGI\(_3\) production does not change. The improvement in the \((PGI_2 + PGI_3)/TXA_2\) ratio is small or negligible following DHA administration as compared to that observed following EPA administration (Fig. 4).
expressed as a linear function of the EPA/AA ratio. Based on the findings of Fischer13 and Hamazaki93) and by plotting the PGI\textsubscript{2}+PGI\textsubscript{3}/TXB\textsubscript{2,3} ratio on the y-axis and the EPA/AA ratio on the x-axis, we obtained the regression line shown in Fig. 5. Although it is difficult to plot the platelet EPA/AA ratio and the red blood cell EPA/AA ratio on the same graph, it is evident that the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXB\textsubscript{2,3} ratio and EPA/AA ratio have a significant linear relationship, which supports the formula expressed above. In other words, the EPA/AA ratio reflects the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXA\textsubscript{2} ratio, i.e., the PGI/TXA balance. As mentioned above, the EPA/AA ratio has been shown to increase to 0.13 with DHA treatment (1.62 g/day)40) and to 0.486 with hp-EPA-E treatment20). Therefore, the contribution of EPA to the increase in the PGI/TXA ratio by EPA is greater than that of DHA.

Relationship between the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXA\textsubscript{2} Ratio and CRP

C-reactive protein (CRP) reduces the expression of PGI\textsubscript{2} synthetase by human umbilical vein endothelial cells95) and decreases PGI\textsubscript{2} release from human artery endothelial cells96). Thermally modified CRP promotes TXA\textsubscript{2} production by platelets97). CRP is a predictor of urinary d-TXB\textsubscript{2} in hypercholesterolemic patients given statins98). Therefore, CRP reduces the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXA\textsubscript{2} ratio, shifting the PGI/TXA balance towards the development and progression of cardiac disease and moving the regression line downwards (Fig. 5). In contrast, the plasma high-sensitivity CRP and EPA concentrations exhibit a negative correlation99). The administration of hp-EPA-E (Epadel60, 1.8 g/d) increased the EPA/AA ratio in metabolic syndrome patients from 0.48 to 0.88 and decreased the CRP levels from 0.22 to 0.08100). EPA medication decreased the CRP level and increased the EPA/AA ratio. Taken together, the shift of the PGI/TXA balance toward CVD was suppressed by the EPA-induced increase in the EPA/AA ratio (the line was shifted upward) and the decrease in the CRP level (the line was shifted downward) (Fig. 6). In addition, aggravation of the PGI/TXA balance may be considered an action of CRP. In contrast, Burns et al. reported that the blood EPA/AA ratio in patients with coronary disease rose from 0.042 to 0.097 following fish oil intake, while the CRP level did not change101). Although this discrepancy in findings cannot be explained, it may be related to the very low EPA/AA ratio.

Significance of the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXA\textsubscript{2} and EPA/AA Ratios

Based on the finding that the onset and/or progression of CVD is associated with the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXA\textsubscript{2} and EPA/AA ratios, the PGI/TXA balance may explain the inhibition of cardiovascular events induced by aspirin and PGI\textsubscript{2} analogs and the onset of cardiovascular events induced by cyclooxygenase-2 inhibitors. In summary, it is important to increase the PGI/TXA ratio in order to reduce the incidence of cardiovascular events. Improvements in the (PGI\textsubscript{2}+PGI\textsubscript{3})/TXA\textsubscript{2} ratio, namely the EPA/AA ratio, may contribute to reducing the frequency of cardiovascular events with EPA administration.

Conclusion

Dyerberg and colleagues examined the relation-
ship between EPA and CVD, and the JELIS study recently demonstrated that EPA administration reduces the risk of CVD. An important difference between EPA and DHA is the metabolism of EPA to bioactive PGI₃. It is assumed that, similar to PGI₂, PGI₃ inhibits platelet aggregation, vascular contraction, myocardial ischemic injury and arteriosclerosis and induces neangiogenesis. Therefore, it is speculated that the CVD risk reduction induced by EPA is also associated with the effects of PGI₃ in addition to the numerous effects of EPA itself (such as TG reduction, inflammation inhibition and improvements in plasma membrane fluidity). This hypothesis is confirmed by the following findings: an increased CVD risk was found to be associated with a reduction in the EPA/AA ratio, and the EPA/AA ratio was found to be positively correlated with the (PGI₂+PGI₃)/TXA₂ ratio.

Conflicts of Interest

None.

References

35) Martin TW, Michaelis KC: Ca2(+) dependent synthesis of prostaglandin I2 and mobilization of arachidonic acid from phospholipids in cultured endothelial cells permeabilized with saponin. Biochim Biophys Acta, 1990; 1054: 159-168

40) Conquer JA, Holub BJ: Supplementation with an algae source of docosahexaenoic acid increases (n-3) fatty acid status and alters selected risk factors for heart disease in vegetarian subjects. J Nutr, 1996; 126: 3032-3039

42) Gerster H: Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Vitam Nutr Res, 1998; 68: 159-173

Höper MM, Voelkel NF, Bates TO, Allard JD, Horan M, Shepherd D, Tudor RM: Prostaglandins induce vascular endothelial growth factor in a human monocytic cell line and rat lungs via cAMP. Am J Respir Cell Mol Biol, 1997; 17: 748-756

100) Nishio S, Kurumatani H: Pharmacological and clinical properties of beraprost sodium, orally active prostacyclin analogue. Folia Pharmacol Jpn, 2001; 117: 123-130
